Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli.

نویسندگان

  • L M Posnick
  • L D Samson
چکیده

Inappropriate expression of 3-methyladenine (3MeA) DNA glycosylases has been shown to have harmful effects on microbial and mammalian cells. To understand the underlying reasons for this phenomenon, we have determined how DNA glycosylase activity and substrate specificity modulate glycosylase effects in Escherichia coli. We compared the effects of two 3MeA DNA glycosylases with very different substrate ranges, namely, the Saccharomyces cerevisiae Mag1 and the E. coli Tag glycosylases. Both glycosylases increased spontaneous mutation, decreased cell viability, and sensitized E. coli to killing by the alkylating agent methyl methanesulfonate. However, Tag had much less harmful effects than Mag1. The difference between the two enzymes' effects may be accounted for by the fact that Tag almost exclusively excises 3MeA lesions, whereas Mag1 excises a broad range of alkylated and other purines. We infer that the DNA lesions responsible for changes in spontaneous mutation, viability, and alkylation sensitivity are abasic sites and secondary lesions resulting from processing abasic sites via the base excision repair pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of a strong mutator phenotype in yeast by imbalanced base excision repair.

Increased spontaneous mutation is associated with increased cancer risk. Here, by using a model system, we show that spontaneous mutation can be increased several hundred-fold by a simple imbalance between the first two enzymes involved in DNA base excision repair. The Saccharomyces cerevisiae MAG1 3-methyladenine (3MeA) DNA glycosylase, when expressed at high levels relative to the apurinic/ap...

متن کامل

Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis.

The current increase in the incidence and severity of infectious diseases mandates improved understanding of the basic biology and DNA repair profiles of virulent microbes. In our studies of the major pathogen and model organism Neisseria meningitidis, we constructed a panel of mutants inactivating genes involved in base excision repair, mismatch repair, nucleotide excision repair (NER), transl...

متن کامل

Effects of nitrous acid treatment on the survival and mutagenesis of Escherichia coli cells lacking base excision repair (hypoxanthine-DNA glycosylase-ALK A protein) and/or nucleotide excision repair.

Deoxyinosine occurs in DNA by spontaneous deamination of adenine or by incorporation of dITP during replication. Hypoxanthine residues (HX) are mutagenic and give rise to A-T-->G-C transition. They are substrates for the Escherichia coli product of the alkA gene, the 3-methyl-adenine-DNA glycosylase II (ALK A protein). In mammalian cells and in yeast, HX is excised by the counterpart of ALK A p...

متن کامل

Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe

The Schizosaccharomyces pombe mag1 gene encodes a DNA repair enzyme with sequence similarity to the AlkA family of DNA glycosylases, which are essential for the removal of cytotoxic alkylation products, the premutagenic deamination product hypoxanthine and certain cyclic ethenoadducts such as ethenoadenine. In this paper, we have purified the Mag1 protein and characterized its substrate specifi...

متن کامل

Interplay between base excision repair activity and toxicity of 3-methyladenine DNA glycosylases in an E. coli complementation system.

DNA glycosylases carry out the first step of base excision repair by removing damaged bases from DNA. The N3-methyladenine (3MeA) DNA glycosylases specialize in alkylation repair and are either constitutively expressed or induced by exposure to alkylating agents. To study the functional and evolutionary significance of constitutive versus inducible expression, we expressed two closely related y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 21  شماره 

صفحات  -

تاریخ انتشار 1999